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Abstract. The classical electron-ion Coulomb Bremsstrahlung process is investigated in nonideal plasmas.
An effective pseudopotential model taking into account the plasma screening and collective effects is applied
to describe the electron-ion interaction potential in a classical nonideal plasma. The classical straight-line
trajectory method is applied to the motion of the projectile electron in order to visualize the variation
of the differential Bremsstrahlung radiation cross-section (DBRCS) as a function of the scaled impact
parameter, nonideal plasma parameter, projectile energy, photon energy, and Debye length. The results
show that the DBRCS in ideal plasmas described by the Debye-Hückel potential is always greater than
that in nonideal plasmas, i.e., the collective effects reduce the DBRCS for both the soft and hard photon
cases. For large impact parameters, the DBRCS for the soft photon case is found to be always greater than
that for the hard photon case.

PACS. 52.20.-j Elementary processes in plasma

1 Introduction

Bremsstrahlung emission [1–11] in plasmas has received
much attention since these processes have been widely
used for plasma diagnostics in laboratory and astrophysi-
cal plasmas. Recently, Bremsstrahlung processes in weakly
coupled plasmas [7,10] have been investigated using the
Debye-Hückel model [12] potential with the classical tra-
jectory method. This Debye-Hückel effective potential de-
scribes the properties of a low density plasma and corre-
sponds to a pair correlation approximation. The plasmas
described by the Debye-Hückel model are called ideal plas-
mas since the average energy of interaction between par-
ticles is small compared to the average kinetic energy of
a particle [13]. However, multiparticle correlation effects
caused by the simultaneous interaction of many particles
with increasing the plasma density should be taken into
account. It is necessary to take into account not only short-
range collective effects but also, in the case of a plasma
with a moderate density and temperature, long range ef-
fects. In this case, the interaction potential is different
from the Debye-Hückel type because of the strong col-
lective effects of nonideal particle interaction [14]. Then,
the Bremsstrahlung radiation spectrum due to electron-
ion Coulomb scattering in nonideal plasmas is different
from that in ideal plasmas. In this paper we investigate
Bremsstrahlung processes in electron-ion Coulomb scat-
tering in nonideal plasmas. A pseudopotential model in-
cluding the plasma screening effects and collective effects
is applied to describe the interaction potential between
the projectile electron and target ion in nonideal plasmas.
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The classical straight-line (SL) trajectory method [2,3,15,
16] is applied to obtain the differential Bremsstrahlung ra-
diation cross section (DBRCS) as a function of the scaled
impact parameter, nonideal plasma parameter, projectile
energy, photon energy, and Debye length.

In Section 2, we discuss the classical expression of the
DBRCS in Coulomb scattering of nonrelativistic projec-
tile electron with target ion in nonideal plasmas described
by the pseudopotential model. In Section 3 we obtain the
closed form of the DBRCS using the components of the
force parallel (F‖) and perpendicular (F⊥) to the velocity
of the projectile electron. We also investigate the variation
of the DBRCS for both the soft and hard photon radia-
tion cases with a change of the impact parameter. The
results show that the DBRCS in ideal plasmas described
by the Debye-Hückel potential is always greater than in
nonideal plasmas described by the pseudopotential. For
large impact parameters, the DBRCS for the soft photon
radiation is found to be always greater than that for the
hard photon radiation. Finally, in Section 4, a discussion
is given.

2 Classical DBRCS

The classical expression of the DBRCS [3] is given by

dσb = 2π
∫

db b dwω(b), (1)

where b is the impact parameter and dwω is the differential
probability of emitting a photon of frequency ω within dω
when a projectile particle changes its velocity in collisions
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with a static target system. For all impact parameters,
dwω is given by the Larmor formula [12] for the emission
spectrum of a nonrelativistic accelerated charge:

dwω =
8πe2

3}c3
|aω |2

dω
ω
, (2)

where aω is the Fourier coefficient of the acceleration a(t)
of the projectile electron

aω =
1

2π

∞∫
−∞

dt eiωta(t). (3)

In the SL trajectory method, the position of the projectile
electron can be represented as r(t) = b+vt with b ·v = 0,
where v is the velocity of the projectile ion. To compute
aω we can set up coordinate axes so that the electron orbit
is in the collision plane; then

|aω|2 =
1
m2

(∣∣F‖ω∣∣2 + |F⊥ω |2
)
, (4)

where F‖ω and F⊥ω are the Fourier coefficients compo-
nents of force F(t) parallel and perpendicular to the pro-
jectile velocity, respectively,

Fµω =
1

2π

∞∫
−∞

dt eiωtFµ, (µ = ‖,⊥). (5)

The non-straight-line character of the motion of the pro-
jectile electron in the field of the scattering potential can
also be investigated using the modified hyperbolic-orbit
curved trajectory method [9,17] including the plasma
screening effect. Since the investigation of the nonideal
effects on the electron-ion Bremsstrahlung processes in
nonideal plasmas is the main purpose of this work, the SL
trajectory method has been used throughout this paper.
It has been known that the DBRCSs using the SL tra-
jectory method and the curved trajectory method are al-
most identical for large impact parameters b > aZ , where
aZ (≡ a0/Z = }2/Zme2) is the first Bohr radius of a hy-
drogenic ion with nuclear charge Z and m is the electron
rest mass. Thus, the SL trajectory method for the large
impact parameter region is quite reliable.

Recently, an integro-differential equation for the effec-
tive potential of the particle interaction taking into ac-
count the simultaneous correlations of N particles was
obtained on the basis of a sequential solution of the chain
of Bogolyubov equations for the equilibrium distribution
function of particles of a classical nonideal plasma [14].
Also, in a recent paper [14], an analytic expression for
the pseudopotential of the particle interaction in non-
ideal plasmas was obtained by application of the spline-
approximation. Using the pseudopotential taking into ac-
count the plasma screening effects and collective effects,
the interaction potential VNI(r) between the projectile
electron and the target ion with charge Z in nonideal plas-
mas can be represented by

VNI(r) = −Ze
2

r
e−r/Λ

1 + γf(r)/2
1 + c(γ)

, (6)

where r is the position vector of the projectile electron
from the target ion, Λ is the Debye length,

f(r) = (e−
√
γr/Λ − 1)(1− e−2r/Λ)/5,

and γ (≡ e2/ΛkTe) is the nonideal plasma parameter,

c(γ) ∼= −0.008617+ 0.455861γ− 0.108389γ2 + 0.009377γ3

is the correlation coefficient for different values of γ, and
Te is the electron temperature. When γ � 1, i.e., for
weakly nonideal or rare ideal plasmas, the pseudopoten-
tial (Eq. (6)) goes over into the Debye-Hückel potential
VDH(r) = −(Ze2/r)e−r/Λ. The use of the pseudopoten-
tial (Eq. (6)) and the SL trajectory impact parameter ap-
proach allows us to derive analytic formulas for the Fourier
coefficients of the force:

Fµω = − Ze2

πv̄aZ

1
1 + c(γ)

F̄µω , (µ = ‖,⊥), (7)

where v̄ ≡ v/aZ and the scaled Fourier coefficients F̄‖ω
and F̄⊥ω are given by

F̄‖ω = i

∞∫
0

dτ τ sin ξτ

×
[

1 + aΛ
r̄3

J(r̄, γ, aΛ)− aΛ
r̄2
K(r̄, γ, aΛ)

]
, (8)

F̄⊥ω =

∞∫
0

dτ b̄ cos ξτ

×
[

1 + aΛ
r̄3

J(r̄, γ, aΛ)− aΛ
r̄2
K(r̄, γ, aΛ)

]
, (9)

where τ (≡ v̄t) is the scaled time, ξ ≡ ω/v̄, aΛ (≡ aZ/Λ)
is the reciprocal scaled Debye length, r̄ (≡ r/aZ) =√
τ2 + b̄2, and b̄ (≡ b/aZ) is the scaled impact parameter.

Here the functions J(r̄, γ, aΛ) and K(r̄, γ, aΛ) are given
by, respectively,

J(r̄, γ, aΛ) = e−aΛr̄ +
γ

10

[
−e−(

√
γ+3)aΛr̄

+ e−(
√
γ+1)aΛr̄ + e−3aΛr̄ − e−aΛr̄

]
, (10)

K(r̄, γ, aΛ) =
γ

10

[
(
√
γ + 2)e−(

√
γ+3)aΛr̄

−√γe−(
√
γ+1)aΛr̄ − 2e−3aΛr̄

]
. (11)

Then, in the nonrelativistic limit, the classical DBRCS is
found to be

dσb =
16
3
α3a2

0

Ē

dω
ω

b̄max∫
b̄min

db̄ b̄
(∣∣F̄‖ω∣∣2 +

∣∣F̄⊥ω∣∣2) , (12)

where α (= e2/}c ∼= 1/137) is the fine structure con-
stant, Ē (≡ mv2/2Z2Ry) is the scaled kinetic energy of
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Fig. 1. The scaled double differential Bremsstrahlung
cross-section (d2χb/dε̄db̄) in units of πa2

0 as a func-
tion of the scaled impact parameter (b̄ = b/aZ) when
Ē = 0.5. Solid line: soft photon radiation ε̄/Ē = 0.1
in nonideal plasmas with γ = 1. Dotted line: soft pho-
ton radiation ε̄/Ē = 0.1 in ideal plasmas, i.e., γ = 0.
Dashed line: hard photon radiation ε̄/Ē = 0.9 in non-
ideal plasmas with γ = 1. Dot-dashed line: hard pho-
ton radiation ε̄/Ē = 0.9 in ideal plasmas, i.e., γ = 0.

the projectile electron, and Ry (= me4/2}2 ∼= 13.6 eV)
is the Rydberg constant. Here the scaled minimum im-
pact parameter b̄min corresponds to the closest distance
of approach at which the electrostatic potential energy of
interaction is equal to the maximum possible energy trans-
fer [6], i.e.

2mv2 =
Ze2

b
e−b/Λ

1 + γf(b)/2
1 + c(γ)

· (13)

The scaled maximum impact parameter b̄max is deter-
mined by the screening length for the Coulomb forces,
i.e., the Debye length: b̄max ≈ a−1

Λ .

3 Determination of the modified DBRCS

The DBRCS [12] is defined by

dχb
dε
≡ dσb
}dω

}ω, (14)

=
16
3
α3a2

0

Ē

b̄max∫
b̄min

db̄ b̄
(∣∣F̄‖ω∣∣2 +

∣∣F̄⊥ω∣∣2) , (15)

where ε (≡ }ω) is the radiation photon energy. In non-
relativistic limit, the parameter ξ can be rewritten as
ξ = ε̄/2

√
Ē, where ε̄ (≡ }ω/Z2Ry) is the scaled photon

energy. Then, the scaled double DBRCS, i.e., the scaled
DBRCS per scaled impact parameter, can be presented as

d2χb
dε̄db̄

/πa2
0 =

16
3π

α3

Ē
[1 + c(γ)]−2

b̄

×
[∣∣F̄‖ω (b̄, γ, aΛ, ε̄, Ē)∣∣2 +

∣∣F̄⊥ω (b̄, γ, aΛ, ε̄, Ē)∣∣2] . (16)

In order to investigate the plasma screening effects on the
DBRCS, we consider two cases for the ratio of the radia-
tion photon energy to the kinetic energy of the projectile
electron: ε̄/Ē (= 2}ω/mv2) = 0.1 (soft photon) and 0.9
(hard photon). Here we choose aΛ = 0.1, γ = 1, and
Ē = 0.5 since the classical trajectory approximation is

known to be reliable for low energy projectiles (v < Zαc)
[3]. Figure 1 shows the scaled double DBRCS (Eq. (16))
for electron-ion Coulomb collisions in ideal and nonideal
plasmas for large impact parameters b > aZ . As we can
see in this figure, the DBRCS in ideal plasmas (γ = 0), as
described by the Debye-Hückel potential, is found to be
always greater than in nonideal plasmas (γ = 1) described
by the pseudopotential. Thus the nonideality (γ 6= 0) of
plasmas, i.e., the collective effect, reduces the DBRCS for
both the soft and hard photon cases. For large impact pa-
rameters (b̄ > 1), the DBRCS for the soft photon case is
always greater than that for the hard photon case.

4 Discussion

We have investigated the plasma screening effects and col-
lective effects on the Coulomb Bremsstrahlung in electron-
ion scattering in classical nonideal plasmas. An effective
pseudopotential model has been applied to describe the
electron-ion interaction in nonideal plasmas. Further, the
classical straight-line trajectory method has been applied
to the motion of the projectile electron in order to visualize
the variation of the DBRCS as a function of the scaled im-
pact parameter (b̄), nonideal plasma parameter (γ), pro-
jectile energy (E), photon energy (ε), and Debye length
(Λ). The results show that the DBRCS in ideal plasmas,
as described by the Debye-Hückel model, is always greater
than that in nonideal plasmas, i.e., the collective effect
(γ 6= 0) suppresses the DBRCS for both the soft and hard
photon radiation cases. For large impact parameters, the
DBRCS for the soft photon radiation case is found to
be always greater than that for the hard photon radia-
tion case. These results provide useful information on the
Bremsstrahlung processes including the plasma screening
effects and collective effects in electron-ion scattering in
nonideal plasmas.
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